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ABSTRACT: Using the solution of Stokes' problem the authors find
exact expressions for the coefficients in the Legendre polynomial
expansion of the potential of the adjusted gravity field of the earth
when a Clairaut ellipsoid is taken as the level surface of the grav-
ity field,
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Based on the solution of Stokes' problem [1-4], exact expressions are found for /749%
the coefficients in the Legendre polynomial expansion of the potential of the adjusted
gravity field of the earth when a Clairaut ellipsoid is taken as the level surface of the
gravity field,

1., The solution of Stokes' problem, with a Clairaut ellipsoid [4] as the level surface
of the earth's gravity field, reduces to the following expression for the gravitational field
potential V [1-3] in the right-hand orthogonal coordinate system Oxyz tied to the earth
(the origin O of this coordinate system coincides with the center of the earth, the z-axis
is directed along the axis of rotation of the earth):

V(e gy 5) = —AP (& + 1) — BQa + CR (1.1)

Here

&
P:.—.arctga’-—m-;, Q=¢'—arctge, R=arctge’ (L.2)

where &' is the second eccentricity of an ellipsoid that is confocal with the Clairaut ellip-
soid and passes through the point at which the potential is defined; A, B and C are con-
stants,

The quantity €' is defined from the equality

e = [(@* =)/ @ + W) (1.3)

*Numbers in the margin indicate pagination in the foreign text.
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where a and b are the semi-major and semi-minor axes of the Clairaut ellipse and v is
the positive root of the equation

2 o+ g 2%

&y Ty =1 (1.4)
The constants A, B and C in formula (1, 1) are found from the relationships
- u{14-e%
A—'2[(3+8‘~‘)arctga——38]’ b=24
ca? fgouta w(1+te¥(e—arcige) (1.5
C—B{ a + (34e¥arctge—3e } )

2 2 1/ 2
Here ¢ =(a
the angular rate of rotatlon of the earth, 8e is the acceleration of gravity at the equator,

Relationships (1. 1)-(1.5) yield an implicit expression for the potential V(x, y, z)
which is not convenient for practical computations, and therefore the gravity field poten-
tial is usually [2-5] represented in the form of a Legendre polynomial expansion

Vo= 34, (& )"“Msincp) (1.6)

“n==)

"N

where the distance r from the center of the earth and the latitude ¢ are the geocentric
coordinates of the point for which the potential is computed, Pn(sin @) is the n~th order

Legendre polynomial and An are constant coefficients in the expansion,

The exact solution (l.dl)—(l.S) of Stokes' problem is not usually used when deter-
mining the coefficients An of the expansion (1,6). They are determined directly, due to

the circumstance that the surface of the Clairaut ellipse is the level surface of the gravity
field. In addition, approximate expressions for the first coefficients A are obtained as
series expansions in the small parameters

a— b2 3 D2 ua

82 = ) <O],’,' e’-;____:aa"1 ) and .q‘.—_—E— (1. 7)

e

The first (and perhaps the second) terms of the expansion are obtained relatively
easily [3, 4]. It also appears possible in this way to set up recursion relationships for
finding the series expansions for the coefficients An of any number sequentially, to any

desired accuracy, However, the method for e‘stablishing these relationships and the re-
lationships themselves are very complicated since the problem, all things considered, -
leads to the solution of an infinite (triangular) system of linear algebraic equations.

The determination of the first coefficients An of the potential expansion (1.6) on the

basis of an exact solution of Stokes' problem is given in [6]. But in this paper they are
" also defined as expansions in powers of small parameters (1. 7).

/b is the second eccentricity of the Clairaut ellopsoid, uis /750




2. Converting to spherical coordinates (geocentric) r, ¢, A in formula (1, 1) ac-
cording to the relations x =rcos¢@cosi, y =rcosgsini, z =rsing, we write the equa-
(2.1)

tion in the following form:
r\2 T .

V.= — 4 (‘7{) (Pcostq -4 2Q sin* @)+ CR

(2.2)

e -

From (1.3) and (1.4), introducing the notation
=Vire

= 0

(e is the first eccentricity of the Clairaut ellopsoid), we obtain the following equation
&' sin? ¢ —'e"-" (2t — 1) — e (2.3)

defining e':

from which
8 == }/.I‘Z_iin p [e22 e 1 - Y (e2? — 1)% - 4¢3 sin® cp]'r/‘w (2.4)
From the last equality of (1.2) and Eq. (2,4) we find
. Vs
R _e | V(e —1p L 4etsinp — ez 1
Gt T YL [ (633 — 1) - de**sint @ ] (2.5)
On going over to complex numbers, expression (2.5) for 8R/9t can be represented
in the form
ke I B 1. o
o 2 [Vi-—ZsinCP(iat)t“(iet)‘* Vi—2wm ¢ (— fel) -+ (— iez)"X' i=V=i (2.6)
1 Since the function (1 - 2x7 + 72)1/ 2 is the generating function for the Legendre /751
;} polynomials'P_(x), i.e.
1 o
—_—_— .= D> T P,
L ViT—Zw né}, “ (2.7)
it follows from (2.6) that
oR D p r o B L N iy O g a\E rn8E D
S ) P (510 Q) [(fet)™ - (—1)" (fet)"] = e kz;f;(—i)h (et)*" Py (sin @) (2. 8)

© =0
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and, consequently, (t=a/r):
241

2_ 2',:21( ) Pyy(sing) +Ci (@) (2.9)

where Cl(q)) is some function of latitude.

Further, from Egs. (1.2) and (2.4), taking (2.2) into account, we find

2
37 (P cos* @ 4 2Q sin? qa)—.=2eﬂt22£ (2, 10)
From this and (2.8), again converting from t to a/r, we find
- 43k B 2);; ) 3
<——/ (P cost - 2Q sin? @) == 2¢2 2 ( 23 <e -g-) P,y (sin @) + (';r-) C& (o) (2.11)
heo 2

where CZ(q)) is also some function of latitude,

3. On substituting expressions (2.9) and (2, 11) into Eq, (2.1) we arrive at the fol-
-lowing expression for the potential V:

= %[ I A <smq>>;rccz<q>>—-A({;)“cz<q>1 3.1

Since the potential V satisfies the condition

lim #V = const, r—oo (3.2)

“then in (3.1), Cl(cp) =0, Cz(qo) =0 and consequently we obtain the following expression
for the earth's gravitational potential:

B

9 4ed 2h+1 R
V(r,¢)=}§0[‘r{i.‘3+9h+1](—) ( ) P._,';\-(sm P) (3.3)

From expression (1.5) and the last equality of (1.7) we obtain the following values
for the constants A and C:

. g.qa (1 4-¢%
A= 2[(3 - &%) arc tg e—3e]
£ott (1 +e¥)(e—arctge) 3.4
C=T{1 [1+(3+zﬁ)mctga——3u]} ( )




In this way

o0
ekl
V=2l dy, (—:—) P, (sin®) (3.5)
K=a)
where /752
kol 3 Ae* C
Ay = (— 1)} e.lu<—;,——-/:_:_—-3+~—-—-—-2k+1> (3.6)

and the constants A and C are defined by Egs. (3.4).

After substituting the values of A and C into (3. 6) and making use of the second
equality of (2.2), we find, finally:

4 gcaagk (—1)k—{ 2k 71) (arc tg e —g) &3 }

28 = T g e, 2%+ 1| T 27 (2 £ 3) [(3 - &) are g 6 — 5] 3.7

Together with (3.5) an expression for the potential can be written in the form:

[ o
a q 2+l ] -
A LI P C 5.9
Then
£o0 2¢ 3(arctge—e)-f-e3
Jo= (1 +82)‘/a{1 +3 (3 eYarctge—3de }
kg2
Jor =7 =l ar X
Wk (e (3.9)
% { 4kedq 1
L — OF 53T + 29) arcig & — 0c — 6eg = 2e%q])
It is easily verfied that approximate expressions for the coefficients J_ ., can also

2k
be established by expanding formulas (3.9) in powers of 32 and q:

Jo = ge (1 — Y2&® -~ 3/aq + 3/get — 13/c50 4 93/ugs0eiq...)
Jg = —1/3e% 4 Y/3q + Yae* — 3/a1e¥q — Mag* — b - 3o + 81zety... (3. 10)
Ty = e2(i/set — 3zq — seb - &7q° + 16/yee%q...) .
Jo = &% (*ng — 2€2..)

The first terms of the expansions obtained for J‘o, JZ and J 4 agree with those given
in [4, 6]. '

If we take [1, 4, 7, 8] u =7.29212 x 10_5 1/sec and 8 = 978,049 cm/secz, the
computed values of these coefficients, for the parameters of the Krasovski ellipsoid




(a = 6738245 m, e

2 = 0.006693422) become:

JoJa = 979,846 a. J, = —1082,24. 10‘6 Jy= 241078 Jg = — 6.3-107%:

and, for the parameters of a Clark ellipsoid (a = 6378206 m, e2 =(,00676817), respect~

ively
Jo/ a= 979,800 a, J,= — 1107.19.407%, J, = 2.5-1078, J4= — £.3.107,
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